Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.

Identifieur interne : 000317 ( Main/Exploration ); précédent : 000316; suivant : 000318

Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.

Auteurs : Andrea Firrincieli [États-Unis] ; Mahsa Khorasani [États-Unis] ; A Carolin Frank [États-Unis] ; Sharon Lafferty Doty [États-Unis]

Source :

RBID : pubmed:32184800

Abstract

Plant-associated microbial communities play a central role in the plant response to biotic and abiotic stimuli, improving plant fitness under challenging growing conditions. Many studies have focused on the characterization of changes in abundance and composition of root-associated microbial communities as a consequence of the plant response to abiotic factors such as altered soil nutrients and drought. However, changes in composition in response to abiotic factors are still poorly understood concerning the endophytic community associated to the phyllosphere, the above-ground plant tissues. In the present study, we applied high-throughput 16S rDNA gene sequencing of the phyllosphere endophytic bacterial communities colonizing wild Populus trichocarpa (black cottonwood) plants growing in native, nutrient-limited environments characterized by hot-dry (xeric) riparian zones (Yakima River, WA), riparian zones with mid hot-dry (Tieton and Teanaway Rivers, WA) and moist (mesic) climates (Snoqualmie, Skykomish and Skagit Rivers, WA). From sequencing data, 587 Amplicon Sequence Variants (ASV) were identified. Surprisingly, our data show that a core microbiome could be found in phyllosphere-associated endophytic communities in trees growing on opposite sides of the Cascades Mountain Range. Considering only taxa appearing in at least 90% of all samples within each climatic zone, the core microbiome was dominated only by two ASVs affiliated Pseudomonadaceae and two ASVs of the Enterobacteriaceae family. Alpha-diversity measures indicated that plants colonizing hot-dry environments showed a lower diversity than those from mid hot-dry and moist climates. Beta-diversity measures showed that bacterial composition was significantly different across sampling sites. Accordingly, we found that specific ASV affiliated to Pseudomonadaceae and Enterobacteriaceae were significantly more abundant in the phyllosphere endophytic community colonizing plants adapted to the xeric environment. In summary, this study highlights that sampling site is the major driver of variation and that only a few ASV showed a distribution that significantly correlated to climate variables.

DOI: 10.3389/fpls.2020.00203
PubMed: 32184800
PubMed Central: PMC7058686


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.</title>
<author>
<name sortKey="Firrincieli, Andrea" sort="Firrincieli, Andrea" uniqKey="Firrincieli A" first="Andrea" last="Firrincieli">Andrea Firrincieli</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Khorasani, Mahsa" sort="Khorasani, Mahsa" uniqKey="Khorasani M" first="Mahsa" last="Khorasani">Mahsa Khorasani</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frank, A Carolin" sort="Frank, A Carolin" uniqKey="Frank A" first="A Carolin" last="Frank">A Carolin Frank</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life & Environmental Sciences School of Natural Sciences, University of California, Merced, Merced, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life & Environmental Sciences School of Natural Sciences, University of California, Merced, Merced, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, Merced, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, Merced, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doty, Sharon Lafferty" sort="Doty, Sharon Lafferty" uniqKey="Doty S" first="Sharon Lafferty" last="Doty">Sharon Lafferty Doty</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32184800</idno>
<idno type="pmid">32184800</idno>
<idno type="doi">10.3389/fpls.2020.00203</idno>
<idno type="pmc">PMC7058686</idno>
<idno type="wicri:Area/Main/Corpus">000388</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000388</idno>
<idno type="wicri:Area/Main/Curation">000388</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000388</idno>
<idno type="wicri:Area/Main/Exploration">000388</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.</title>
<author>
<name sortKey="Firrincieli, Andrea" sort="Firrincieli, Andrea" uniqKey="Firrincieli A" first="Andrea" last="Firrincieli">Andrea Firrincieli</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Khorasani, Mahsa" sort="Khorasani, Mahsa" uniqKey="Khorasani M" first="Mahsa" last="Khorasani">Mahsa Khorasani</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frank, A Carolin" sort="Frank, A Carolin" uniqKey="Frank A" first="A Carolin" last="Frank">A Carolin Frank</name>
<affiliation wicri:level="2">
<nlm:affiliation>Life & Environmental Sciences School of Natural Sciences, University of California, Merced, Merced, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life & Environmental Sciences School of Natural Sciences, University of California, Merced, Merced, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, Merced, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, Merced, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doty, Sharon Lafferty" sort="Doty, Sharon Lafferty" uniqKey="Doty S" first="Sharon Lafferty" last="Doty">Sharon Lafferty Doty</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant-associated microbial communities play a central role in the plant response to biotic and abiotic stimuli, improving plant fitness under challenging growing conditions. Many studies have focused on the characterization of changes in abundance and composition of root-associated microbial communities as a consequence of the plant response to abiotic factors such as altered soil nutrients and drought. However, changes in composition in response to abiotic factors are still poorly understood concerning the endophytic community associated to the phyllosphere, the above-ground plant tissues. In the present study, we applied high-throughput 16S rDNA gene sequencing of the phyllosphere endophytic bacterial communities colonizing wild
<i>Populus trichocarpa</i>
(black cottonwood) plants growing in native, nutrient-limited environments characterized by hot-dry (xeric) riparian zones (Yakima River, WA), riparian zones with mid hot-dry (Tieton and Teanaway Rivers, WA) and moist (mesic) climates (Snoqualmie, Skykomish and Skagit Rivers, WA). From sequencing data, 587 Amplicon Sequence Variants (ASV) were identified. Surprisingly, our data show that a core microbiome could be found in phyllosphere-associated endophytic communities in trees growing on opposite sides of the Cascades Mountain Range. Considering only taxa appearing in at least 90% of all samples within each climatic zone, the core microbiome was dominated only by two ASVs affiliated
<i>Pseudomonadaceae</i>
and two ASVs of the
<i>Enterobacteriaceae</i>
family. Alpha-diversity measures indicated that plants colonizing hot-dry environments showed a lower diversity than those from mid hot-dry and moist climates. Beta-diversity measures showed that bacterial composition was significantly different across sampling sites. Accordingly, we found that specific ASV affiliated to
<i>Pseudomonadaceae</i>
and
<i>Enterobacteriaceae</i>
were significantly more abundant in the phyllosphere endophytic community colonizing plants adapted to the xeric environment. In summary, this study highlights that sampling site is the major driver of variation and that only a few ASV showed a distribution that significantly correlated to climate variables.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32184800</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>203</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00203</ELocationID>
<Abstract>
<AbstractText>Plant-associated microbial communities play a central role in the plant response to biotic and abiotic stimuli, improving plant fitness under challenging growing conditions. Many studies have focused on the characterization of changes in abundance and composition of root-associated microbial communities as a consequence of the plant response to abiotic factors such as altered soil nutrients and drought. However, changes in composition in response to abiotic factors are still poorly understood concerning the endophytic community associated to the phyllosphere, the above-ground plant tissues. In the present study, we applied high-throughput 16S rDNA gene sequencing of the phyllosphere endophytic bacterial communities colonizing wild
<i>Populus trichocarpa</i>
(black cottonwood) plants growing in native, nutrient-limited environments characterized by hot-dry (xeric) riparian zones (Yakima River, WA), riparian zones with mid hot-dry (Tieton and Teanaway Rivers, WA) and moist (mesic) climates (Snoqualmie, Skykomish and Skagit Rivers, WA). From sequencing data, 587 Amplicon Sequence Variants (ASV) were identified. Surprisingly, our data show that a core microbiome could be found in phyllosphere-associated endophytic communities in trees growing on opposite sides of the Cascades Mountain Range. Considering only taxa appearing in at least 90% of all samples within each climatic zone, the core microbiome was dominated only by two ASVs affiliated
<i>Pseudomonadaceae</i>
and two ASVs of the
<i>Enterobacteriaceae</i>
family. Alpha-diversity measures indicated that plants colonizing hot-dry environments showed a lower diversity than those from mid hot-dry and moist climates. Beta-diversity measures showed that bacterial composition was significantly different across sampling sites. Accordingly, we found that specific ASV affiliated to
<i>Pseudomonadaceae</i>
and
<i>Enterobacteriaceae</i>
were significantly more abundant in the phyllosphere endophytic community colonizing plants adapted to the xeric environment. In summary, this study highlights that sampling site is the major driver of variation and that only a few ASV showed a distribution that significantly correlated to climate variables.</AbstractText>
<CopyrightInformation>Copyright © 2020 Firrincieli, Khorasani, Frank and Doty.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Firrincieli</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khorasani</LastName>
<ForeName>Mahsa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frank</LastName>
<ForeName>A Carolin</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Life & Environmental Sciences School of Natural Sciences, University of California, Merced, Merced, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, Merced, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doty</LastName>
<ForeName>Sharon Lafferty</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus microbiome</Keyword>
<Keyword MajorTopicYN="N">endophytes</Keyword>
<Keyword MajorTopicYN="N">phyllosphere</Keyword>
<Keyword MajorTopicYN="N">plant bacterial microbiome</Keyword>
<Keyword MajorTopicYN="N">xeric environment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32184800</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00203</ArticleId>
<ArticleId IdType="pmc">PMC7058686</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2018 Jun;218(4):1327-1333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29504646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Dec;11(12):2691-2704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28753209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2019 Jun 20;670:1111-1124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31018427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 1;546(7656):145-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28538736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2019 May;201(4):415-429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30834947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jun 02;8:971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28626450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jul 03;10:862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31333701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Oct 30;82(1):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26519390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jun 18;10:1353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31275276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Apr 2;6:e4600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29629248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2019 Aug 14;26(2):183-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31415751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 07;7:1971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28003808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2014 Dec;117:232-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25078615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2015 Oct;91(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26362924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 17;4:409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 22;8(4):e61217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2006 Nov;29(7):539-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2016 Feb;183:92-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26805622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi J Biol Sci. 2016 Jan;23(1):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26858542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Feb;75(3):748-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Feb 23;8(1):3560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29476114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2019 Aug 14;5(8):eaax1396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31453338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Feb;63(2):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Nov-Dec;27(6):715-725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jan;23(1):25-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29050989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Apr 12;9(1):5999</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30979925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Mar;81(6):907-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25645593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2019 Feb;77(2):429-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30196314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Mar 13;8:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 02;9:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29552021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 Jul 1;628-629:1582-1599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30045575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1999 Sep;52(3):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10531643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Oct;18(10):3593-3605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27516206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2011 May-Jun;29(3):351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21272631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e36090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Mar 1;68(7):1757-1767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2017 Jul 26;5(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28933739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Feb 23;5(1):25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28231859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29666229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 28;15(3):e2001793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28350798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lett Appl Microbiol. 2018 Apr;66(4):268-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29359344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2016 Jun 18;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27316353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:807-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 12;10(1):4135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31515535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2019 Sep 2;19(1):201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31477026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2009 Jul;11(5):416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Mar;21(3):218-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2019 Jan 29;7(1):13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30696492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2018 Feb;75(2):407-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28840330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Aug 16;6(1):143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30115122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 15;9:2732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30498482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Aug;37(8):852-857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31341288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 19;11(5):e0155979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27196608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):1032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Firrincieli, Andrea" sort="Firrincieli, Andrea" uniqKey="Firrincieli A" first="Andrea" last="Firrincieli">Andrea Firrincieli</name>
</region>
<name sortKey="Doty, Sharon Lafferty" sort="Doty, Sharon Lafferty" uniqKey="Doty S" first="Sharon Lafferty" last="Doty">Sharon Lafferty Doty</name>
<name sortKey="Frank, A Carolin" sort="Frank, A Carolin" uniqKey="Frank A" first="A Carolin" last="Frank">A Carolin Frank</name>
<name sortKey="Frank, A Carolin" sort="Frank, A Carolin" uniqKey="Frank A" first="A Carolin" last="Frank">A Carolin Frank</name>
<name sortKey="Khorasani, Mahsa" sort="Khorasani, Mahsa" uniqKey="Khorasani M" first="Mahsa" last="Khorasani">Mahsa Khorasani</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000317 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000317 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32184800
   |texte=   Influences of Climate on Phyllosphere Endophytic Bacterial Communities of Wild Poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32184800" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020